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The principles developed for the description of defect equilibria in crystalline solids are applied to the structon 
model of the structure of vitreous silica and a dilute solid solution of the oxide of a monovalent cation in vitreous 
silica. 

Introduction 

During the past few years a considerable degree of 
success has accompanied the use of the defect model 
of the structure of crystalline solids. The basic 
approach taken in applying this model is to focus 
attention upon the description and behavior of 
structural perturbations; that is, upon deviations 
from the “ideal” regularly repeating structure of a 
“perfect crystal.” This has been a very useful view- 
point, leading to an understanding of many of the 
structure-sensitive properties of crystalline solids. 

Furthermore, it has been found that defects in 
such materials can be treated as quasichemical 
species and that many of the standard techniques 
for handling chemical equilibrium and kinetics can 
be applied to them. A considerable body of knowl- 
edge has been accumulated concerning defect 
chemistry, pointing the way toward control of the 
defect structure and, hence, of many of the im- 
portant defect-dependent properties of crystalline 
solids. 

ln this paper, these concepts are applied to 
vitreous oxides, specifically silica (commonly rep- 
resented by the stoichiometric formula Si02), in 
order to establish a framework for treatment of the 
interaction between the various structural con- 
figurations in this and other similar “amorphous” 
materials under conditions in which local equi- 
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librium can be assumed (generally, above the glass 
transition temperature). 

The application of the techniques developed by 
study of the defect chemistry of crystalline solids to 
vitreous systems depends upon the proper identifica- 
tion of the normal structural units, as well as those 
which can be treated as defects or deviations. 

Although it is recognized that the state of under- 
standing of the structure of glassy or vitreous oxides 
is presently well behind that of the structure of 
crystalline solids, a considerable amount of informa- 
tion is nevertheless at hand. The general concept of 
the microscopic structure of vitreous materials has 
gone through a gradual transition. A completely 
random and disordered model has been replaced by 
various less disordered types of network models, 
and more recently, by one in which the network 
structure is determined by the preference for some 
types of local structural arrangements over others. 
This last approach has been greatly strengthened in 
recent years by results obtained using modern 
experimental tools, such as optical spectroscopy, 
electron and nuclear spin resonance, and x-ray 
diffraction [especially that using fluorescence 
X-radiation (I). 

The local structural units found in vitreous 
materials are usually the same as, or very similar 
to, those in chemically similar crystalline solids 
(I-3). 

There are various ways in which these local 
arrangements can be described. in silicon dioxide, 
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for example, one can consider the structure to be 
composed of silicon cations and oxygen anions. 
This approach has a certain attractiveness because 
of its inherent simplicity and the fact that it leads to 
the correct prediction of some structural features in 
related materials that depend primarily on cou- 
lombic forces. On the other hand, this extreme 
viewpoint leads (3) to the incorrect prediction of an 
Si-0-Si bond angle of 180”, as well as incorrect 
predictions of the structure in a number of other 
substances. Furthermore, it is definitely known that 
the silicon and oxygen atoms in silica and silicates 
are held together by bonds that, although quite polar, 
possess a considerable amount of electronpair 
sharing character. 

For present purposes, as well as others, it is 
preferable to focus attention upon local structural 
groupings as the basic structural units. The label 
“structon” was introduced some time ago (4-7) for 
this purpose, each type of structon signifying a 
specific type of atom, with specified kinds and 
numbers of close neighbors. A considerable body of 
evidence has been accumulated that demonstrates 
the relationship of many of the important properties 
of vitreous solids to the predominant, and in some 
cases to the minority, types of structons (local 
structural arrangements) present. 

It is useful to have a simple, easily understandable 
way of symbolically representing each structon type. 
In the system adopted for doing this, the normal 
chemical symbol for the central atom in the structon 
is given first; then, in parentheses, symbols for the 
numbers and types of its neighboring atoms. In the 
case neighboring oxygen atoms, it is desirable also 
to indicate whether they also “bridge” to other 
silicon atoms. The convention that is used here is 
to represent the preponderant bridging oxygens that 
are closely adjacent to two silicon atoms by the 
symbol 0”. A “nonbridging” oxygen (close to only 
one silicon) is represented by the symbol 0’; one 
that is close to three silicons is signified by 0’“. 
To avoid confusion between these oxygen symbols 
and zero, a centered dot is used between a number 
and an oxygen symbol following it in a structon 
formula. 

To help avoid confusion with the ordinary 
formulas for molecules and ions, the structon 
formula is enclosed in angle brackets: ( ). Also, if 
a structon has a “formal charge,” it is indicated by a 
plus or minus. The formal charge is defined (8) as 
the number of electron charge units related to the 
presence of the structon, computed on the assump- 
tion that one electron of each shared electronpair 
associated with the structon “belongs” to it. A 

number of examples of structon formulas are given 
in Table I, as well as Eqs. (2)-(4). 

The local configurations around both electro- 
positive atoms, such as silicon, and electronegative 
atoms, such as oxygen, are important. It should be 
pointed out, however, that the close neighbor 
structure is completely determined by either the set 
of electropositive atom-centered (Si) structons alone 
or the set of electronegative atom-centered (0) 
structons alone. Either set can be reproduced from 
the other by using the requirement that for each 
B-type neighbor around an A-type atom there must 
be an A-type neighbor around a B-type atom. 

Before considering structural defects, one should 
obviously have knowledge of the background or 
“normal” structure. Deviations from this normal 
structure then constitute the defects (defect struc- 
tons). They may or may not be electrostatically 
charged relative to the normal structure. At present 
we are interested in those which are charged, and 
are concerned with the differences between the 
defect structons and the related normal structons, as 
regards the numbers and kinds of neighbors, the 
structon charge (as indicated by the formal charge), 
and stability. 

We shall discuss the relationships between the 
numbers of charged defect structons of different 
types, the numbers of (extra) electrons and holes, 
certain equilibrium constants, and experimentally 
variable factors, such as the partial pressure or 
chemical activity of gaseous oxygen in equilibrium 
with the solid. 

Intrinsic Defects in Vitreous Silica 

Although it is not really very realistic in many 
practical cases because of the presence of alkali ions 
and other “foreign” species, let us first consider the 
structural species in the vitreous pure silicon oxide 
system. In both quartz (3, 9) and vitreous silica (I) 
the normal structons are of just two types: a silicon 
surrounded tetrahedrally by four oxygens, and an 
oxygen bridging between two silicon neighbors. 
Both silicon and oxygen atoms in these structons 
have formal charges of zero, so we consider these 
normal structons to be uncharged. (See Table I.) 

Considering possible types of oxygen-centered 
defect structons in pure silica, the only reasonable 
ones are those in which the oxygen atom has either 
one (a nonbridging oxygen) or three close silicon 
neighbors. In these the formal charges of the oxygen 
atoms (and so the structon charges) are -1 and +l, 
respectively. Nonbridging oxygens are found in 
many silicate crystals, but experimental evidence for 
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TABLE I 

STRUCTURAL UNITS IN VITREOUS SILICA AND DILUTE VITREOUS SILICATES CONTAINING 
OXIDES OF MONOVALENT CATIONS 

Structural species 
Formal Simplified 

Structon formula Structural diagram charge notation 

Normal structons 
1. Predominant 

Si-centered structon 

2. Predominant 
oxygen-centered 
structon (bridging 
oxygen) 

Defect structons 
1. Silicon-centered 

structon with one 
oxygen neighbor 
nonbridging 

2. Silicon-centered 
structon with one 
oxygen neighbor 
forming a three-way 
bridge 

3. Nonbridging 
oxygen structon 

4. Most probable 
oxygen-centered 
structon with 
positive charge 
(three-way bridging 
oxygen) 

5. Monovalent cation 
(eg., Na, W 

Electronic defects 
1. Electron 
2. Hole 

I 
P 

(Si(4.0”)) -O-+-O- 

6 

(o”(2Si)) Si-0-Si 

I 
P 

<Si(O’, 3 * W)) 
-O-Ti-O- 

P 

9 
(Si(3.0”, On)> -0-si-0: 

P 
<O’(Si)-> Si-O- 

<0”(3Si)+) 

<M+) 

,,Si 
Si-0, 

Si 

+l CM+> 

-1 - 
+l K+ 

0 

0 

0 

0 

-I <s-) 

+l <s+> 

oxygens with three silicon neighbors has not yet 
been reported. 

The existence of small concentrations of defect 
structons of the nonbridging oxygen type in 
vitreous silica has been shown by the observation 
(12) of a structure-sensitive band in the 900-950 
cm-’ region of the infrared spectrum, apparently 
the same band as is observed (13) in binary silicate 
glasses which are known to contain nonbridging 
oxygens. This and other experimental observations 
have been supported by recent theoretical calcula- 
tions (24). 

The lack of experimental evidence for defect 
structons consisting of oxygens with three close 
silicon neighbors is not surprising. The concen- 
tration of such structons is subject to the equilibrium 
related to their reaction with nonbridging oxygen 
structons to form normal bridging oxygen structons. 
In pure vitreous silica these concentrations are 
expected to be quite low. Furthermore, as will be 
shown later, this equilibrium is displaced in favor 
of nonbridging oxygen defect structons when 
monovalent cations such as hydrogen or sodium are 
present. From a practical standpoint, it is very 
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difficult to avoid the existence of small but significant 
concentrations of such ions. It may be noted, how- 
ever, that oxygen atoms are known to have three 
boron neighbors in a high temperature form of boric 
oxide and in a few crystalline borates (11). On the 
other hand, oxygen atoms with no silicon neighbors 
(oxide ions) and oxygen atoms with four or more 
silicon neighbors are relatively very unlikely. Their 
formal charges would be -2 and +2, respectively, 
and they would not conform to the principle that 
structures tend to deviate as little as possible from 
local charge neutrality (3, 10). Such structons are 
unknown (as normal components) in silicates. 

In the crystalline and amorphous forms of silica 
as well as in all silicates of known structure, the 
silicon atoms always have four oxygen neighbors 
(I, 9, 15-17). One apparent exception to this rule, 
however, is silicon pyrophosphate, in which the 
silicons each have six oxygen neighbors (18), but 
the situation there is very different from that in the 
systems we are now considering. For one thing, the 
phosphorus atoms hold oxygens even more tightly 
than do silicon atoms. It seems safe to assume that 
all of the silicon atoms in pure silica and in silica 
containing small amounts of a metal oxide such as 
NazO as impurity have just four oxygen neighbors. 
If some of the oxygens have either one or three 
silicon neighbors, then some of the silicon-centered 
structons must be of the (Si(O’, 3 * 0”)) or 
(Si(3.0”, 0”‘)) types. In these, as in the normal 
<Si(4.0”)) structons, the formal charge on the 
silicon atoms, and so the structon charge, is zero. 

By analogy to the situation in crystalline solids, it 
is reasonable, because of the entropy term in the 
Gibbs free energy, to expect the structure of 
vitreous silica to contain finite concentrations of 
defect structons under conditions in which local 
equilibrium can be attained. Furthermore, the con- 
centrations of the various defect structons should 
depend on temperature, component activities at 
interfaces, and the presence of foreign species. 

General Methodology Used in Treatment of 
Defect Equilibrium 

By analogy to the procedure normally followed 
in the defect chemistry of simple nonmetallic 
crystals, defect equilibrium in vitreous oxides can be 
expressed in terms of quasichemical reactions 
involving the pertinent defect structon species. 
Straightforward thermodynamic treatment results 
in the use of the law of mass action formalism, 
written in terms of the chemical activities of these 
species. 

If care is exercised in writing such quasichemical 
reactions with regard to electrostatic charge and 
mass balances, a perfectly rigorous result is obtained 
in terms of the activities of the pertinent species. 
Assumptions must be introduced, however, if one 
wishes to translate from activities to concentrations, 
as in the case of crystalline materials. 

The usual method of treatment of intrinsic defect 
equilibrium in chemically pure but not necessarily 
stoichiometric binary solids in which crystallo- 
graphic (ionic) disorder predominates over electronic 
disorder involves an assumption (often based upon 
experimental observation) of the identities of the 
two most probable ionic defect species. They 
contribute opposite electrostatic charges and cause 
opposite compositional changes by their presence. 
Differences in their concentrations result in a net 
electrostatic charge, which must be balanced by 
small concentrations of other charged species, such 
as electrons or holes. The total number of defect 
species which are involved in the pertinent equi- 
librium in such binary systems within any given 
compositional range is thus usually four. Their 
concentrations can be found by the solution of four 
simultaneous independent relations, the condition 
for electroneutrality and the law of mass action 
expressions relating to three independent quasi- 
chemical reactions. If other defect species are also 
assumed to exist (such as defects with different 
ionization states) further independent reactions are 
obviously required. 

The selection of the appropriate quasichemical 
reactions to consider to solve defect equilibrium 
problems is quite straightforward. The Gibbs phase 
rule indicates that at specified pressure and tempera- 
ture an equilibrium system is completely determined 
if the number of compositional variables which are 
specified is one less than the number of chemical 
components. Therefore, in a binary system such as 
nonstoichiometric silica, one composition-determin- 
ing relation is needed. In a ternary system, two are 
required. These compositional relations can be of 
various types. The concentration (or activity) of one 
of the species may be known, the ratio of species 
concentrations (or activities) may be known, or the 
concentration (or activity) of one species may be 
determined by equilibrium with an adjacent phase 
of known properties, this equilibrium being ex- 
pressed by a quasichemical reaction across the phase 
boundary. 

Another type of independent relation is obtained 
from the reaction to form a defect pair such as an 
electron and a hole. In addition, a structural defect 
pair formation reaction is needed. The selection of 
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the specific defects to be involved in this latter 
relation depends, of course, upon the disorder model 
and resultant defect species assumed to be dominant. 

When dealing with simple binary systems at a 
given temperature it is quite common to use this 
method to calculate the concentrations of all per- 
tinent defect species as functions of either the overall 
chemical composition or, preferably, the activity of 
one component. This is facilitated by approximating 
the electroneutrality condition by assuming equality 
between the concentrations of the two dominant 
defects in any given compositional range (19). If 
both this approximate electroneutrality condition 
and the law of mass action expressions for the 
appropriate quasichemical reactions are written in 
logarithmic form, a simple set of simultaneous 
linear equations results which can be easily solved. 
A number of examples of the use of this method 
have been discussed elsewhere (20-22). 

Application to Defect Equilibria in Pure Vitreous 
Silica 

One can make the reasonable assumption that 
there are only four important defect species in the 
pure binary vitreous silica system, two defect 
structons, and electrons and holes. The four in- 
dependent relations to be solved simultaneously 
involve two defect pair formation reactions, one 
composition relation, and the appropriate electro- 
neutrality expression. 

As in other solids that are poor electronic con- 
ductors, we assume that small numbers of electrons 
can be removed from atoms in the silica. These 
unattached electrons and the sites from which they 
have come (“holes”) will be designated by the 
symbols e- and h+, respectively. Furthermore, we 
expect that such electronic defects will be sufficiently 
mobile that their concentrations can be described in 
terms of a standard electron-hole pair formation 
reaction. This results in a law of mass action 
expression which can be written in the form 

Ki = [e-l [A+] (1) 

in which the square brackets designate concentra- 
tions in number per cubic centimeter and Ki is an 
equilibrium constant. The distinction between 
itinerant and trapped electronic species is not 
important at this juncture. 

The other defect pair formation reaction of 
importance for our purposes involves the formation 
of small numbers of defect structons from a structure 
consisting of normal structons. A reasonable 

reaction of this type in pure silicon dioxide would 
be represented by the following two equations, one 
written for silicon-centered structons, and the other 
for oxygen-centered structons : 

4(Si(4*0”)) z (Si(O’, 3.0”)) + 3!Si(3*0”, 0”)) 
(24 

and 

2(0”(4Si)) Z (O’(Si)-) + (0”‘(3Si)+). (2b) 

These equations are not independent, but are 
coupled together because each silicon-oxygen 
contact is also an oxygen-silicon contact, as dis- 
cussed earlier. Because of this redundant relation- 
ship, the equilibrium for the overall structural change 
occurring need not be expressed in terms of the sum 
of Eqs. (2a) and (2b). Instead, only Eq. (2b) will be 
used. Since the normal (O”(4Si)) structons are 
present in an overwhelmingly large and essentially 
constant concentration relative to the others, the 
law of mass action expression for this reaction, 
written in terms of the defect structon concentra- 
tions, becomes 

Kd = [(O’(Si)-)] [(0”(3Si)+)]. (34 

The value of the equilibrium constant K,, is, of 
course, determined by the free energy change 
resulting from the formation of the defect structons 
from normal structons. 

For simplicity and to make the resulting equations 
more readily applicable to other systems, the two 
defect structon types in Eq. (3a) will be represented 
by the abbreviated symbols (S? and (S+). Hence, 
Eq. (3a) becomes 

Kl = rw>l[(~+>l. (3b) 
Since a change in the ratio of the concentrations of 

the two types of defect structons in Eq. (3) produces a 
change in the overall silicon-oxygen ratio, it is to be 
expected that the concentration of the negative 
structons can be increased by reaction of oxygen gas 
from the environment with the normal structons in 
the silica. In order to maintain charge balance, this 
must be accompanied by concurrent removal of 
electrons from (unspecified) atoms to form holes. 
The two coupled equilibria are 

$0, + (O”(2Si)) z? 2(O’(Si))‘? + 2h.’ (4a) 

and 
2(Si(4.0”)) * 2(Si(O’, 3.0”)). (4b) 

As explained in the discussion of Eq. (3), we need 
consider only one of these two equations and can 
neglect changes in the concentrations of the normal 
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structons. We therefore write for the equilibrium 
constant: 

Ku, = [(O’(Si)-)]2 [h+]2p-1’2, 

or more simply 
(54 

K, = [(S-)-y [hf]2p-“2. (5b) 
Here p represents the partial pressure of oxygen gas 
assumed to be in equilibrium with the solid. 

For electroneutrality, 

KS->1 + b-1 = KS+>1 + b+l. (6) 
The concentrations of the four defect species 

presumed to be dominant in pure vitreous silica can 
now be determined, as functions of Ki, &, K. and p, 
by solution of the simultaneous Eqs. (l), (3), (5), 
and (6). The following results, expressed in log- 
arithmic form, are obtained. 

In [e-J = In Ki - 3 In [l + Ki(Kop1’2)-1’2] + 

+ln [Kd + (Kop1i2)1/2] - $ln [K0p”2], 
(7) 

In [A+] = 4 In [l + Ki(Kop1’2)-1’2] - 

$ln [Kd + (Kop1’2)*/2] + 

3 In [Kop”2], (8) 

In [(S-j] = -$ln [l + Ki(Kop1’2)-1’2] + 
+ln [Kd + (Kop1’2)1’2], (9) 

and 

In [(S’)] = In Kd + 3 In [l + Ki(Kop”2)-1’2] - 
$ln [Kd + (Kop1’2)*‘2]. v-9 

These rather complicated equations can be 
simplified considerably for certain special cases. 
For example, at intermediate values of oxygen 
partial pressure, when the concentrations of the two 
types of defect structons can be assumed to be much 
greater than those of electrons or holes, the electro- 
neutrality Eq. (6) can be approximated by 

KS->1 = KS’>l. (11) 
Solution of the simultaneous Eqs. (l), (3), (5), and 
(11) then yields the following: 

ln[e-]=lnK,+~lnK,-~ln(K,p1~2), (12) 
In [h+] = - 3 In Kd + + In (Kop1/2), (13) 

In [(S-)] = + In Kd, (14) 
and 

In [(S+>] = $ln Kd. (15) 
Thus we see that in this region of oxygen partial 

pressure the concentrations of both minority 
defects (electrons and holes) vary with the magnitude 

of the partial pressure of oxygen in equilibrium with 
the silica, while the concentrations of the dominant 
structon defects are essentially constant. The latter 
concentrations, however, will be temperature- 
dependent, for the equilibrium constant Kd should 
vary with temperature according to the relation 

Kd = exp (- AGJRT), (16) 

where AG, is the free energy change for the reaction 
in which one mole of each of the defect structons is 
formed. See Eq. (Zb). 

Because of the dependence of the concentrations 
of electrons and holes on the oxygen partial pressure 
[Eqs. (12) and (13)], it follows that when p is small 
enough, the electron concentration becomes greater 
than the concentration of the negatively charged 
structon. Then the electroneutrality condition 
[Eq. (6)] can no longer be approximated by Eq. (11). 
As [e-]/[(S-)] approaches infinity, the relationship 

is approached. 

[e-l = [6+>1, (17) 

Solution of the simultaneous Eqs. (l), (3), (5), 
and (17) yields the following equations for the defect 
concentrations at very low values of oxygen partial 
pressure : 

In [e-l = +ln Ki f 5 In Kd - $In (Kop112), (18) 
ln[h+]=~lnK,-~lnK,+~ln(K0p1’2), (19) 

ln[(S>] = -*InKi + +lnKa + &ln(K,,p112), (20) 

and 

In [(S’)] = + In Kj + f In Kd - 4 In (K,,p1’2). (21) 

The transition from the regime of intermediate 
oxygen partial pressures, in which Eqs. (12)-( 15) are 
good approximations, to that in which Eqs. (18)-(21) 
are approximately valid is, of course, gradual. The 
location of the transition region on the oxygen 
partial pressure scale can be determined by assuming 
a sharp transition from one set of approximations 
[Eqs. (ll)-(15)] to the other [Eqs. (17)-(21)] and 
calculating the value of the “critical partial pressure” 
pcl, at which it occurs. If Eqs. (11) and (17) simul- 
taneously hold in such a hypothetical system, 

k-1 = W>l. (22) 

Setting the right sides of Eqs. (12) and (14) equal, 
we see that 

lnp,, =41nKi-2lnKo. (23) 
Considering now the situation at very high 

oxygen partial pressures, comparison of Eqs. (13) 
and (15) shows that the hole concentration then 
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dominates over the positive structon concentration. 
Likewise, from Eqs. (12) and (14), the negative 
structon concentration dominates the electron 
concentration. Hence the electroneutrality relation, 
Eq. (6) reduces to 

[C-)1 = @+I. (24) 
Simultaneous solution of Eqs. (l), (3), (5), and (24) 
yields, for very high oxygen partial pressures, 

In [e-l = In Ki - * In(K,p”*), (25) 
In [h+] = *In (KOpii2), (26) 

In [<S-j] = $ In (&pi’*), (27) 
and 

In [(S,‘)] = In Kd - $In (Kop”*). (28) 

The second “critical partial pressure” pc2, for the 
transition between the intermediate and very high 
oxygen partial pressure regimes can be calculated 
in the same manner as pc, with the result, 

Inp,, = 4 In Kd - 2 In K,,. (2% 

In accordance with normal practice in dealing 
with defects in crystalline solids, one can construct a 
“defect equilibrium diagram” in which the logar- 
ithms of the various defect concentrations are plotted 
versus the logarithm of the oxygen partial pressure. 
From such a diagram one can quickly see both the 

50 - 

t 40 - 

m 
s .- 
z 
c 
: 
8 30 - 

g 

< 

20 - 

10 - 

relative magnitudes of the defect concentrations at 
a given oxygen partial pressure (or activity) and the 
way that these magnitudes change as the oxygen 
partial pressure is varied. Such a defect equilibrium 
diagram, for arbitrarily chosen values of the equi- 
librium constants, is shown for the case of vitreous 
silica in Fig. 1. 

It is seen that (with the chosen constants) there is 
a broad central region of oxygen partial pressure 
over which the concentrations of the defect 
structons are essentially constant, dominating the 
electron and hole concentrations. For equilibrium 
with very low values of oxygen partial pressure, 
however, the electron concentration becomes 
significant, and at very high oxygen partial pressures, 
the hole concentration becomes important. 

Influence of a Third Element 

Silicates have at least one other element present 
in addition to silicon and oxygen. It may be hydro- 
gen, a monovalent element such as sodium, a 
bivalent element such as calcium, or an element of 
higher valence, such as aluminum. These additional 
atoms are invariably surrounded by oxygens, the 
forces holding them there being largely coulombic, 
at least in the monovalent and bivalent cases. For 
our purposes, it is a good approximation, in such 

[<S->] = [h+] 

FIG. 1. Defect equilibrium diagram for vitreous silica, illustrating the influence of oxygen partial pressure on the 
concentrations of the pertinent structon and electronic defects. Assumed values: Ki = 10z8, Kd = 1036, K,, = 1064. 
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cases, to consider the added atoms as cations, 
neglecting any electronpair bonding that may exist. 
Consideration of silicates containing elements of 
higher valence, such as boron, aluminum, or phos- 
phorus, introduces complications that we do not 
wish to contend with here, but hope to deal with in 
future papers, For the present we shall limit our 
discussion to silicates containing relatively small 
amounts of a monovalent cation, such as sodium. 
For short, we call these “dilute silicates.” 

Sodium (or other) cations cannot, of course, be 
added to silicon dioxide without the simultaneous 
addition of anions, such as O-*, to maintain electro- 
static charge balance. The representation of the 
compositions of sodium silicates by use of formulas 
such as Na,O*SiO,, Na,O*xSiO,, etc., may give 
the correct relative numbers of atoms, but is some- 
what misleading since the actual structures do not 
contain discrete Na,O or Si02 units. 

The addition of cations and oxide anions causes 
changes in the normal silicon dioxide structure, 
primarily by reducing the number of oxygen bridges. 
In the resulting structure, more of the oxygen- 
centered structons are thus of the 0’ type, with only 
one close silicon neighbor. The structon changes 
occurring when an oxide ion (from sodium oxide, 
for instance) is added to silicon dioxide can be 
represented by the reaction 

2(Si(4*0”)) + (O”(2Si)) + O-* * 
Z(Si(O’, 3 -0”)) + 2(O’(Si)-). (30) 

The addition of two monovalent cations and one 
oxide ion from a metal oxide thus adds two positive 
CM+) structons and two negative (O’(Si)-) structons 
to the structure. Since the latter type is the same as 
one of the two types of defect structons that we have 
considered to be present in pure silica, the equi- 
librium involving these intrinsic defect structons, 
holes, and electrons must be affected. 

The electroneutrality relation is now 

[(O’(Si)-I + [e-l = [(0”‘(3Si)+>] + [h+] + [(M+)] 
(314 

or 
[(S-)1 + [e-l = [(S’)] + [h’] + [(M+)]. (31b) 

Simultaneous solution of this equation with Eqs. 
(l), (3), and (5) leads to the following equations for 
the concentrations of the defects (other than the M 
cations) as functions of the equilibrium constants, 
M cation concentration, and oxygen partial 
pressure. 

In [e-l = 1nKi - ln(& +&j + In Y, (32) 

In [h+] = In (Ki +f,) - In Y, (33) 

In [(S)] = lnfP -In (Ki +f,> + In Y (34) 

In [(S’)] = -lnfP + In (Ki +f,) + In Kd In Y 
(35) 

where 

Y = 5 KM+)1 + kHW+>l* + 

and 
(4, t-f,> (4 +f,>/W” (36) 

f, = (K,-#*)"*. (37) 
If the concentration of the M cations is sufficiently 

less than that of either of the other two positively 
charged species on the right side of Eq. (31), the 
presence of these cations has but little influence on 
the defect equilibria. This becomes obvious on 
comparison of this equation with Eq. (6). 

On the other hand, when the right side of Eq. (3 1) 
becomes dominated by the concentration of the 
cations, variations in the defect concentrations must 
occur. It can be seen from Fig. 1 that the importance 
or lack of importance of the cations will depend 
primarily on the concentration of the positively 
charged defect structons. From Eqs. (6) and (15) we 
can conclude that, for intermediate values of oxygen 
partial pressure, the defect concentrations will be 
appreciably affected whenever 

In [(M+)] B 3 In K,. (38) 

The critical parameter is thus the equilibrium 
constant Kd. 

Although the details will be omitted here, it can 
be shown that at larger values of cation concentra- 
tion the defect equilibria are modified as depicted 
in the schematic diagram of Fig. 2. 

It is seen that the major effect of the presence of 
the cations is to expand the range of oxygen partial 
pressure over which the defect structons dominate 
the electronic defects. 

In the extremely low-oxygen partial pressure 
regime, in which the electron concentration is 
significant and the monovalent cation concentration 
is overwhelmed by the concentration of positively 
charged oxygen-centered structons, the defect 
concentrations are given by Eqs. (18)-(21). 

When the oxygen partial pressure becomes so 
great that the concentration of the positive defect 
structons falls below the monovalent cation con- 
centration, the appropriate approximation for the 
electroneutrality relation, Eq. (3 l), becomes 

WI = [<M+)l. (39) 
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FIG. 2. Defect equilibrium diagram for vitreous silica containing a small amount of the oxide of a monovalent 
cation. Cation concentration assumed to be 10zo/cm3 ; constants the same as for Fig. 1. For simplification, the curva- 
ture of the concentration curves near the critical values of oxygen partial pressure has been neglected. 

This can be solved simultaneously with Eqs. 
(l), (3), and (5) to give the defect concentrations: 

In [e-l = In [(M+)], (40) 
In [h+] = lnK, - In [(M+)], (41) 

In [(S)] = In [(M+)] - 1nKi + $ln(KOp”2), (42) 

and 
In [(St)] = In K,, - In [(M+)] + In Ki - 

41n(KOp1’2). ” (43) 

Comparison with Eqs. (18)-(21) shows that the 
dependence of the defect concentrations on the 
oxygen partial pressure has been changed. Most 
importantly, the concentration of the negatively 
charged defect structons, containing nonbridging 
oxygens, increases more rapidly with oxygen partial 
pressure than is the case when M cations do not 
influence the charge balance. It can be shown that 
this results in the concentration of this species 
replacing the electron concentration as the dominant 
member of the negative side of the electroneutrality 
Eq. (31) at the same critical value of oxygen pressure 
as that with no M ions present [Eq. (23)]. 

The concentrations of the defect species at 
increasing values of oxygen partial pressure are 
then found by simultaneous solution of 

[(M+)] = [(S-)] (44) 

and Eqs. (l), (3), and (5). The results are as follows: 

In [e-l = In Ki + In [(M+)] - $ln(KOp1’2), (45) 

In [h’] = -In [(M+)] + $ In (K,,P”~), (46) 
In [(S-)1 = In [(M+)], (47) 

and 
In [(St)] = In Kd - In [(M-‘)I. (48) 

The oxygen partial pressure range over which 
these relations hold will be terminated when the 
hole concentration becomes equal to the M ion 
concentration, so that the former begins to dominate 
the positive side of Eq. (31). At still greater values of 
oxygen partial pressure the presence of M ions will 
not significantly influence the concentrations of 
the other defects. As before, they will be given by 
Eqs. (25)-(28). 

The upper oxygen pressure limit for appreciable 
influence of the M ions on the concentrations of the 
other defects can be found from 

[;M ‘,I = [h’] (49) 

and Eq. (46) to be 

lnpc2,m = 8 In [<M+)] - 2 In K,. (50) 

Thus we see that the presence of M ions in a 
vitreous silicate has a very substantial influence on 
the equilibrium concentrations of the defect species. 
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Specifically, it causes the number of negative defect 
structons, containing nonbridging oxygens, to 
increase and extends the range of oxygen partial 
pressure over which ionic disorder predominates 
over electronic disorder. 

Discussion 

The purpose of this paper has been to establish a 
framework upon which a more detailed under- 
standing of the structure of vitreous solids can be 
constructed. Attention has been focused on the 
identification of important minority structural 
species in such materials, and upon their thermo- 
dynamic interaction under conditions of local 
equilibrium. It has been shown how this can be done 
by the use of methods analogous to those that have 
been developed for the quantitative description of 
defect equilibria in crystalline materials. 

Only the very simple isothermal cases of pure silica 
and a dilute solution of the oxide of a monovalent 
cation in silica have been treated here. Further 
elaboration can be done in a straightforward 
manner, following the crystalline analogy. A 
reasonably detailed review of various applications of 
these techniques to semiconductors and other non- 
metallic crystalline solids is given in Ref. (22). 

This discussion has been focused on parametric 
relationships, without attention being given to actual 
values of the pertinent constants in real systems. 
Some of these are presently unknown. 

The present approach has been based on the 
assumption that many structure-sensitive properties 
in solids such as those dealt with here can be related 
to the types and concentrations of minority close 
neighbor arrangements (structons). With regard to 
properties dependent upon majority species, there 
is a considerable body of evidence supporting the 
structon point of view. For example, it was shown 
some time ago (6, 7) that the density of simple 
silicate glasses can be directly related to the types 
and numbers of structons present. Since the 
refractive index, n, is related (23, 24) to the molal 
refraction, R, and the molal volume, I’, by 

n=l+R/V, (51) 

it is therefore also closely related to the structon 
concentrations. 

Furthermore, the viscosity of vitreous materials 
is strongly affected by changes in the overall 
composition and hence in the types and numbers of 
structons. It is to be expected that the temperature 
dependence of the viscosity, as well as the thermal 
expansion coefficient (25) and compressibility 

(26-28) of vitreous materials can also be explained 
in terms of the temperature dependence of their 
structon compositions. In dealing with such 
properties, especially the viscosity, it is to be 
expected that defect structon species will sometimes 
play a major role, as is the case in metals. 

The relationship between the presence and 
concentration of nonbridging oxygens and phase 
separation phenomena in glasses has been discussed 
by a number of authors (29). Further investigations 
of this and related problems in terms of structon 
equilibria should prove fruitful. 
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